Thermoreversible nanocrystalline gel for applications in energy, defense and telecommunications

February 19, 2022

(News from Nanowerk) New applications in energy, defense and telecommunications could get a boost after a team at the University of Texas at Austin created a new type of “nanocrystal gel” – a gel composed of tiny nanocrystals each 10,000 times smaller than the width of a human hair that are linked together in an organized network.

The gist of the team’s discovery is that this new material is easily adjustable. That is, it can be switched between two different states by changing the temperature. This means that the material can function as an optical filter, absorbing different frequencies of light depending on whether it is in a gel state or not. So it could be used, for example, outside buildings to dynamically control heating or cooling. This type of optical filter also finds applications for defence, in particular for thermal camouflage.

Colorimetric quantification of binding in thermoreversible nanocrystalline gel assemblies.

Gels can be customized for these large-scale applications because the nanocrystals and the molecular linkers that link them into networks are design components. Nanocrystals can be chemically tuned to be useful for routing communications through fiber optic networks or for keeping spacecraft temperatures stable on distant planetary bodies. Linkers can be designed to tilt gels based on ambient temperature or detection of environmental toxins.

“You can change an object’s apparent heat signature by changing the infrared properties of its skin,” said Delia Milliron, professor and chair of the McKetta Department of Chemical Engineering at the Cockrell School of Engineering. “It could also be useful for telecommunications which all use infrared wavelengths.”

The new research is published in the journal Scientists progress (“Colorimetric quantification of binding in gel assemblies of thermoreversible nanocrystals”).

The team, led by graduate students Jiho Kang and Stephanie Valenzuela, carried out this work through the university’s Center for Materials Dynamics and Control, a materials research and engineering center in the National Science Foundation which brings together engineers and scientists from across campus to collaborate on materials. Scientific Research.

The lab experiments allowed the team to see the material change back and forth between its two states of gel and non-gel (i.e. floating nanocrystals suspended in liquid) that they triggered by specific temperature changes.

Supercomputer simulations performed at UT’s Texas Advanced Computing Center helped them understand what was happening in the gel at the microscopic level when heat was applied. Based on theories of chemistry and physics, the simulations revealed the types of chemical bonds that hold the nanocrystals together in a lattice, and how these bonds break when touched by heat, causing the decomposition of the gel.

This is the second unique nanocrystalline gel created by this team, and they continue to pursue advances in this area. Kang is currently working on creating a nanocrystalline gel that can change between four states, making it even more versatile and useful. This gel would be a mixture of two different types of nanocrystals, each capable of switching between states in response to chemical signals or temperature changes. Such tunable nanocrystal gels are called “programmable” materials.